Bayesian information criterion (BIC) er et kriterium til udvælgelse af modeller blandt et begrænset antal modeller. Det er delvis baseret på sandsynlighedsfunktionen, og det er nært beslægtet med Akaike-informationskriteriet (AIC).
Ved tilpasning af modeller er det muligt at øge sandsynligheden ved at tilføje parametre, men dette kan resultere i overtilpasning. BIC løser dette problem ved at indføre et strafudtryk for antallet af parametre i modellen. Strafudtrykket er større i BIC end i AIC.
BIC er blevet anvendt i vid udstrækning til modelidentifikation i tidsserier og lineær regression. Den kan imidlertid anvendes ret bredt på ethvert sæt af maksimumlikelihood-baserede modeller.
Matematisk set kan BIC defineres som-


Anvendelse &Interpretation:
Modellerne kan testes ved hjælp af de tilsvarende BIC-værdier. Lavere BIC-værdi indikerer lavere straftermer og dermed en bedre model.
Læs også AIC-statistik.
Selv om disse to mål er udledt fra et andet perspektiv, er de tæt beslægtede. Den eneste forskel er tilsyneladende, at BIC tager højde for antallet af observationer i formlen, hvilket AIC ikke gør.
Og selv om BIC altid er højere end AIC, er en lavere værdi af disse to mål bedre for modellen.
Praksisdatasæt:
Besøg vores Data science and analytics platform, Analyttica TreasureHunt, for at øve dig på rigtige datasæt.
Læs også følgende:
Sammenfaldskontrol.
Kernel Filter.
K-Means Clustering.